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How can we find the best shapes?

Best

Good

Bad

5% less drag



Research in the Multidisciplinary Design Optimization 
Laboratory has two complementary thrusts

MDO algorithms Applications of MDO

http://mdolab.engin.umich.edu

By the inverse function theorem, if
@R
@u is invertible at u⇤, there exists a

local inverse R�1 defined on an open neighborhood of R(u⇤) in the
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The Jacobian of the inverse turns out to be equal to the matrix of total

derivatives we are after, so the result is
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This equation unifies all methods for computing the derivatives of a

computational model.
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Theoretical developments need to be implemented and 
applied in industry for impact and to inform research needs

Theory

Applications Implementation

Impact

Publications

SoftwareIndustry



Numerical methods have been playing an 
increasing role in engineering simulations

Experiments

Numerical
simulations

0

1200

2400

A380 
(2005)

A350 
(2013)

Airbus A380 - RAe Hamburg & VDI  January 2008 Page 16

Airbus Aerodynamics
A World-Class, Transnational Team

Airbus A380 - RAe Hamburg & VDI  January 2008 Page 16

Airbus Aerodynamics
A World-Class, Transnational Team

40% fewer wind tunnel days

[Source: Airbus A380 - RAe Hamburg & VDI January 2008]



Numerical optimization provides a way to 
fully automate the design process

Wing span
Airfoil shapes
Structural sizing

Fuel burn

Structural 
stresses

Design 
optimization 
problem:

Design changes

minimize
with respect to

subject to

f(x)
x
c(x) ≤ 0

objective
design variables
constraints



In practice, there is another outer loop where the 
designer reformulates the optimization problem

Reformulate optimization problem

Post-optimality studies

Wing span
Airfoil shapes
Structural sizing

Fuel burn

Structural 
stresses

Design changes



State of the art in aircraft MDO is many disciplines 
with low fidelity, or one or two with high fidelity



Want to do MDO with two or more high-fidelity 
disciplines, starting with aerodynamics and structures



Before doing high-fidelity aerostructural optimization well, 
we need to develop robust aerodynamic shape 
optimization capability



Gradient-based optimization is the only hope for
large numbers of design variables

Martins and Ning. Engineering Design Optimization. Cambridge University Press, 2021.

https://www.dropbox.com/s/3i1qmydet323nx5/mdobook.pdf


MACH-Aero is an open-source framework with all the 
tools required for aerodynamic design optimization

pyGeo IDWarp ADflow

OpenFOAM + DAFoam

pyOptSparse

All modules have a Python interface, which is used to couple them

OpenVSP

https://github.com/mdolab/MACH-Aero

https://github.com/mdolab/MACH-Aero


CFD Solvers:
ADflow and OpenFOAM

https://github.com/mdolab/adflow
Both of these CFD solvers are open source

https://github.com/mdolab/adflow


ADflow is a RANS solver that includes an adjoint 
method for efficient derivative computation

‣ Parallel, finite-volume, cell-centered, overset, solver 
for RANS equations

‣ Approximate Newton–Krylov method for speed and 
robustness

‣ Spalart–Allmaras turbulence model

‣ Discrete adjoint developed using automatic 
differentiation (AD) to evaluate partial derivatives

‣ Full-turbulence adjoint 

Yildirim, Kenway, Mader, and Martins. A Jacobian-free approximate Newton–Krylov startup strategy for 
RANS simulations. Journal of Computational Physics, 2019

https://www.researchgate.net/publication/333725868_A_Jacobian-free_approximate_Newton-Krylov_startup_strategy_for_RANS_simulations


ANK is extremely robust

CRM at 90 deg and M=0.85



This 8 million cell M6 mesh converges in 
about 14 minutes with 120 processors



Optimizing an airfoil starting from a circle is not a need…

He, Li, Mader, Yildirim, Martins. Robust 
aerodynamic shape optimization—
from a circle to an airfoil. Aerospace 
Science and Technology, 2019

http://mdolab.engin.umich.edu/content/jacobian-free-approximate-newton-krylov-startup-strategy-rans-simulations


…but optimizations does sometimes 
try intermediate crazy designs

He, Li, Mader, Yildirim, Martins. Robust aerodynamic shape optimization—from a circle to an airfoil. Aerospace Science and Technology, 2019

http://mdolab.engin.umich.edu/content/jacobian-free-approximate-newton-krylov-startup-strategy-rans-simulations


OpenFOAM can be used interchangeably in
MACH-Aero using the same interface

‣ Pressure based solver better suited for low speed applications
‣ Can handle unstructured meshes
‣ Slower than ADflow, but still fast enough for optimization



Mesh Generation: pyHyp

https://github.com/mdolab/pyhyp

https://github.com/mdolab/pyhyp


pyHyp extrudes the surface meshes 
to make volume meshes 

‣ Uses hyperbolic mesh generation algorithms
‣ High-quality mesh in terms of stretch ratio and orthogonality
‣ Can handle collar meshes



We overset the meshes to obtain the full configuration mesh



Geometry Parametrization: 
pyGeo or OpenVSP

https://github.com/mdolab/pygeo

https://github.com/mdolab/pygeo


pyGeo parametrizes geometries using
free-form deformation volumes



Mesh Deformation: IDWarp

https://github.com/mdolab/idwarp

https://github.com/mdolab/pygeo


IDWarp works together with pyGeo for a seamless 
propagation of design shape variables to the mesh

‣ Can be used for 
both structured 
and unstructured 
meshes

‣ Fast and robust



IDWarp deforms the volume mesh based on
new surface mesh

https://youtu.be/NfXJWDSqfJg


Optimization Algorithms

https://github.com/mdolab/pyoptsparse

https://github.com/mdolab/pyoptsparse


‣ Python wrapper for for various 
optimizers

‣ Supports both gradient-based 
and gradient-free optimizers

‣ Facilitates comparisons

‣ Includes OptView for history 
visualization 

‣ Open source 

pyOptSparse and OptView facilitate the use of 
optimization algorithms

[https://github.com/mdolab/pyoptsparse]

Kenway, Mader, Jasa, Martins. pyOptSparse: a Python framework for large-scale 
constrained nonlinear optimization of sparse systems. Journal of Open Source 
Software, 2020.

http://%5Bhttps://github.com/mdolab/pyoptsparse%5D
https://joss.theoj.org/papers/10.21105/joss.02564


Derivative Computation



Methods for computing derivatives
Black box Analytic Algorithmic

Inputs and outputs Governing equation 
residuals and states Lines of code

Finite differences

Complex-step method

Direct method

Adjoint method

Forward mode

Reverse mode

Martins and Hwang. Review and unification of methods for computing derivatives 
of multidisciplinary computational models. AIAA Journal, 2013.

Martins, Sturdza, and Alonso. The complex-step derivative approximation. 
ACM Transactions on Mathematical Software, 2003.

R(x , u) ⇤ 0

f (x , u)

x

f

R(x , u) ⇤ 0

f (x , u)

v1 ⇤ x
v2 ⇤ V2(v1)
v3 ⇤ V3(v1 , v2)
.
.
.
f ⇤ V(v1 , ...)

x

f

https://mdolab.engin.umich.edu/bibliography/Martins2013a
https://mdolab.engin.umich.edu/bibliography/Martins2003a


The adjoint method is efficient when computing 
derivatives for large numbers of design variables

Objective or constraint

Design variable vector
Governing equation residuals

States

Kenway, Mader, He, and Martins. Effective adjoint approaches for computational fluid dynamics. Progress in Aerospace Sciences, 2019

https://www.researchgate.net/publication/333518918_Effective_Adjoint_Approaches_for_Computational_Fluid_Dynamics


For more details, see Chapter 6 of my new book
(the PDF if free at https://mdobook.github.io)

Martins and Ning. Engineering Design Optimization. Cambridge University Press, 2021.

ENGINEERING
DESIGN OPTIMIZATION
JOAQUIM R.R.A. MARTINS 
ANDREW NING

https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization
https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization


Applications



Wave drag is eliminated, and 
total drag is reduced by 8.5%

Lyu, Kenway, and Martins. Aerodynamic shape optimization investigations of the Common Research Model wing benchmark. AIAA Journal, 2015.

https://www.youtube.com/watch?v=UlfTj6f4R9w
https://arc.aiaa.org/doi/10.2514/1.J053318


Optimization takes 6 hours using 128 cores

‣ Fuselage and tail are deleted from original CRM.

‣ Root is 

‣ A series of ASO results of the CRM wings for 
Aerodynamic Design Optimization Workshop are 
presented.

‣ RANS optimized results are significantly different 
from Euler results.

‣ Efficient RANS adjoint implementation allows 
reasonable computational time.



Two very different starting points: 
CRM baseline vs. NACA0012 airfoil with no twist

https://www.youtube.com/watch?v=NBqJPDX8P9c&feature=youtu.be


Now, let’s start with an even worse design!

‣ Fuselage and tail are deleted from original CRM.

‣ Root is 

‣ A series of ASO results of the CRM wings for 
Aerodynamic Design Optimization Workshop are 
presented.

‣ RANS optimized results are significantly different 
from Euler results.

‣ Efficient RANS adjoint implementation allows 
reasonable computational time.

https://www.youtube.com/watch?v=nuC-3X7Uxmc


Can we get an airplane starting from a sphere?

Brelje, Anibal, Yildirim, Mader, Martins. Flexible formulation of spatial integration constraints in aerodynamic shape optimization. AIAA Journal, 2020.

https://arc.aiaa.org/doi/10.2514/1.J058366


Can we get an airplane starting from a sphere?

Brelje, Anibal, Yildirim, Mader, Martins. Flexible formulation of spatial integration constraints in aerodynamic shape optimization. AIAA Journal, 2020. (in press)

https://arc.aiaa.org/doi/abs/10.2514/6.2019-2355


We were able to tackle the aerodynamic design 
optimization of the strut-braced wing thanks to the 
overset capability



Final design reduced interference drag and 
resulted in a strut with negative lift

Secco and Martins. RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes. Journal of Aircraft, 2019

https://arc.aiaa.org/doi/abs/10.2514/1.C034934


Webfoil is an airfoil database that optimizes airfoils 
in a few seconds based on machine learning

http://webfoil.engin.umich.edu

http://webfoil.engin.umich.edu


Wing design demands more than just aerodynamics

Shape in flight
Shape on ground 

B787 wing at OSL and en route to JFK
© 2013 J.R.R.A. Martins



Want to optimize both aerodynamic shape and
structural sizing, with high-fidelity

Mission profile and flight envelope

Altitude

Range

W0

W1

W2 W3

W0.5

W1.5

W2.5
32 000 ft

36 000 ft
40 000 ft

2666 nm 2666 nm 2667 nm

8000 nm

3-segment mission

Fuel burn based on
Breguet range equation

L/D evaluated at
segment mid-range point

Failure and buckling
constraints applied at
full and 10% fuel loads

Two high-speed dive
conditions at 20 000 ft at
fixed Mach number

Clean-wing stall
constraint at variable air
speed

-1

0

1

2

2.5

3

Load factor

Equivalent air speed

VDVS VA

CL = CLmax

2.5g stall 2.5g dive

-1g dive

11 / 24



Coupled solution of aerodynamics and structures, 
and the corresponding coupled adjoint

Kennedy and Martins. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. 
Finite Elements in Analysis and Design, 2014

Kenway, Kennedy, and Martins. Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and derivative computations. 
AIAA Journal, 2014

http://www.sciencedirect.com/science/article/pii/S0168874X14000730
https://arc.aiaa.org/doi/abs/10.2514/1.J052255


Coupled solution of aerodynamics and structures, 
and the corresponding coupled adjoint

Kennedy and Martins. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. 
Finite Elements in Analysis and Design, 2014

Kenway, Kennedy, and Martins. Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and derivative computations. 
AIAA Journal, 2014

http://www.sciencedirect.com/science/article/pii/S0168874X14000730
https://arc.aiaa.org/doi/abs/10.2514/1.J052255


Coupled adjoint method efficiently computes 
gradients with respect to thousands of variables

number of blocks, this behavior would not be observed. The total-
derivative time includes the calculation of all partial-derivative terms
in the total-derivative equation.
It is instructive to examine how the convergence characteristics of

the nonlinear aerostructural solution and linear adjoint solutions
change as the size of the computation increases by nearly two orders
of magnitude. Figure 7 shows the nonlinear convergence, and Fig. 8
shows the adjoint convergence.
For both the level-1 and level-2 meshes, convergence to 10−6 is

achieved in approximately the same number of iterations (16 and 19,
respectively), whereas engineering accuracy (10−3) for the lift-to-
drag ratio is achieved in approximately 10 iterations. However, the
level-3 solution requires 36 iterations, and engineering accuracy is
not achieved until iteration 20.
Moving from mesh level 2 to 3, the number of NLBGS iterations

doubles, but thewall time increases by a factor of 4.3. Because a fixed
aerodynamic forcing tolerance is used, each iteration is also more
costly on the larger mesh. The performance for the coupled adjoint
solution is similar. In this case, the cost of each iteration is similar
for all three mesh levels, such that the number of iterations required
for convergence in Fig. 8 is representative of the overall solution
time. All of the adjoint solutions use the same aerodynamic
preconditioning settings, ILU(1) and additive Schwartz(1), resulting
in nearly constant memory usage across the mesh levels. For mesh
level 3, faster convergence times can be achieved by using stronger
preconditioning, which reduces the condition number of the
preconditioned system.

E. Design Variable Scalability

The main advantage of using the coupled adjoint method to
compute the gradients of the functions of interest is that the
computational cost is theoretically independent of the number of
design variables. However, as described in Sec. III.B, careful
implementation of the partial-derivative terms ∂I∕∂x, ∂A∕∂x, and
∂S∕∂x in the total-derivative equation (15) is required to ensure that
the computational cost is practically independent of the number of
design variables.
We now consider the time required to compute the gradient of CL

with respect to thousands of design variables. The design variables
are distributed according to Table 8 and contain both global
geometric variables and local variables.
We compare the computational time required to compute the

gradient for the coupled adjoint method and for first-order finite
differences. The level-2 discretization is used, and the computational
time is normalized by the time required for a single aerostructural
solution. The results are shown in Fig. 9.
We expect the cost of finite differencing to be linearly dependent

on the number of design variables. However, the slope is not equal
to one but is significantly lower, because the solution for each

design-variable perturbation uses the previous solution as a starting
point, and it is closer to the converged state than a uniform-flow field
solution. For each additional design variable, finite differencing
requires a time equivalent to 23% of an aerostructural solution,
resulting in a slope of 0.23.
The coupled adjoint method exhibits an extremely small slope.

The main contributor to this slope is the design-variable-dependent
load transfer, which requires a synchronous data transfer for each
geometric design variable. Nevertheless, each additional design
variable requires only 0.005% of the aerostructural solution time.
It is worth comparing the current results with the previous work of

Martins et al. [27]. In that work, the coupled adjoint cost was found to
scalewith the number of design variables according to 3.4! 0.01Nx.
Because the constant term in the equation includes the aerostructural
solution, the coupled adjoint solution had a baseline cost of 2.4. The
present method scales according to 1.67! 5 × 10−5Nx, as indicated
in Fig. 9. This corresponds to a baseline cost for the coupled adjoint of
0.67, i.e., a 72% reduction relative to the previous implementation.
This is primarily due to the elimination of the finite differencing that
was used to compute the off-diagonal coupled adjoint terms. This
improvement is even more significant in absolute terms because the
aerostructural solution of the new implementation is also much more
efficient. Additionally, the slope in the dependency on the number of
design variables has been reduced by over two orders of magnitude.
This is achieved by eliminating the use of finite difference derivatives
in the total-derivative equation (15).
We have shown that the new implementation of the coupled

adjoint method exhibits extremely good design-variable scaling.
The coupled computational cost can be considered practically
independent of the number of design variables, and it is now feasible
to compute coupled gradients with respect to thousands of design
variables.

V. Conclusions
Strategies for the analysis and derivative computation of high-

fidelity aerostructural systems have been presented. Two methods
were implemented for solving the nonlinear aerostructural systems:
a block Gauss–Seidel method with Aitken acceleration and a fully
CNK approach. Both methods performed well on the present
problem of interest, with the latter method typically requiring 10%
less computational time than the former. With the proposed CNK
approach, a typical aerostructural solution with 2 × 106 CFD cells

Table 8 Design variables

Description Quantity
Global variables

Span 1
Sweep 1
Chord 3
Twist 5
Shape 4818

Aerodynamic variables
Angle of attack 1
Tail rotation 1

Structural variables
Upper skin 54
Lower skin 54
Upper stringers 54
Lower stringers 54
Ribs 18
Rib stiffeners 18
Spars 36
Total 5120

Number of design variables
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Fig. 9 Gradient evaluation cost for first-order finite differencing and
the coupled adjoint method vs number of design variables; one unit of
normalized time corresponds to one aerostructural solution.

KENWAY, KENNEDY, AND MARTINS 15

Finite differences

Adjoint

Kenway, Kennedy, and Martins. Scalable parallel approach for 
high-fidelity steady-state aeroelastic analysis and derivative 
computations. AIAA Journal, 2014

https://arc.aiaa.org/doi/abs/10.2514/1.J052255


NASA-Michigan 
undeformed Common 
Research Model 
(uCRM) 

Let’s do aerostructural optimization!

Brooks, Kenway,Martins. Benchmark aerostructural models for the study of transonic aircraft wings, AIAA Journal, 2018.

Kenway,Martins. High-fidelity aerostructural optimization considering buffet onset, AIAA 2015-2790.

https://www.researchgate.net/publication/318169833_Benchmark_Aerostructural_Models_for_the_Study_of_Transonic_Aircraft_Wings
https://mdolab.engin.umich.edu/bibliography/Kenway2015c


Optimize 973 “aerodynamic” and structural sizing 
design variables



https://youtu.be/b-DbEmq_hVw


Kenway and Martins. High-fidelity aerostructural optimization considering buffet onset, AIAA 2015-2790

http://mdolab.engin.umich.edu/content/aerostructural-optimization-common-research-model-configuration


From a plank to a transonic wing

53

Fuel burn minimization 
Mach 0.85

37,000 ft


Off-design 
2.5g maneuver

1.3g buffet


Grid sizes 
Coarse: 52k cells

Medium: 152k cells

Fine: 417k cells

Very fine: 1.2M cells

Bons and Martins. Aerostructural design exploration of a wing in 
transonic flow, Aerospace, 2020.

https://www.mdpi.com/2226-4310/7/8/118


Developed uCRM-13.5, a high aspect ratio 
flexible version of the CRM

Brooks, Kenway, and Martins. Benchmark aerostructural models for the study of transonic aircraft wings. AIAA Journal, 2018

https://arc.aiaa.org/doi/full/10.2514/1.J056603


Tow-steered composite high AR wing

Brooks, Martins, and Kennedy. High-fidelity aerostructural optimization of tow-steered composite wings. Journal of Fluids and Structures, 2019

https://mdolab.engin.umich.edu/bibliography/Brooks2019a


Our design was built using an AFP machine

Aurora Builds Tow-Steered Carbon Wing for NASA, Aviation Week & Space Technology, 2017

http://aviationweek.com/future-aerospace/aurora-builds-tow-steered-carbon-wing-nasa


The wingbox was tested by NASA

Tim
Brooks



The coupled adjoint method was generalized in as 
modular analysis and unified derivatives (MAUD)

Chain rule

Unified derivatives 
equation (UDE)

∂r
∂u

du
dr

= I =
∂r
∂u

⊺du
dr

⊺

Implicit analytic: direct and adjoint

AD: forward and reverse

Coupled systems with mixed explicit 
and implicit components: direct and 
adjoint

Hwang and Martins. A computational architecture for coupling 
heterogeneous numerical models and computing coupled 
derivatives. ACM Transactions on Mathematical Software, 2018

Martins and Hwang. Review and unification of methods for 
computing derivatives of multidisciplinary computational 
models. AIAA Journal, 2013.

Martins and Ning. Engineering Design 
Optimization. Cambridge University Press, 
2021.

https://www.researchgate.net/publication/325839518_A_Computational_Architecture_for_Coupling_Heterogeneous_Numerical_Models_and_Computing_Coupled_Derivatives
https://www.researchgate.net/publication/259195539_Review_and_Unification_of_Methods_for_Computing_Derivatives_of_Multidisciplinary_Computational_Models
https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization


MAUD includes hierarchical solvers and coupled 
derivatives for complex systems

Hwang and Martins. A computational architecture for coupling heterogeneous numerical 
models and computing coupled derivatives. ACM Transactions on Mathematical Software, 2018

Martins and Ning. Engineering Design Optimization. 
Cambridge University Press, 2021.

https://www.researchgate.net/publication/325839518_A_Computational_Architecture_for_Coupling_Heterogeneous_Numerical_Models_and_Computing_Coupled_Derivatives
https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization


MAUD was implemented in

‣ Developed at NASA Glenn
‣ Python-based
‣ Open-source framework
‣ Facilitates the coupling multiple models and optimization
‣ Efficient coupled solution via Newton-type methods
‣ Efficient coupled adjoint derivative computation 

Gray, Hwang, Martins, Moore, and Naylor. OpenMDAO: An open- source framework for multidisciplinary design, analysis, and optimization. 
Structural and Multidisciplinary Optimization, 2019

https://doi.org/10.1007/s00158-019-02211-z


Yildirim, Gray, Mader, and Martins. Aeropropulsive design optimization of a boundary layer ingestion system. 
AIAA 2019- 3455.

Airframe-propulsion integration demands
CFD-based MDO

https://arc.aiaa.org/doi/abs/10.2514/6.2019-3455
https://youtu.be/1nyDCR-9RlA


Rotor optimization of NASA Tiltwing 
vehicle subject to noise constraints

Pacini et al. Towards Efficient Aerodynamic and Aeroacoustic Optimization for Urban Air 
Mobility Vehicle Design. AIAA SciTech 2022.

https://mdolab.engin.umich.edu/bibliography/Lyu2014f.html


Other OpenMDAO 
applications

Gray, Hwang, Martins, Moore, and Naylor. OpenMDAO: An open- 
source framework for multidisciplinary design, analysis, and 
optimization. Structural and Multidisciplinary Optimization, 2019

https://link.springer.com/article/10.1007/s00158-019-02211-z


Summary
‣ Gradient-based optimization and efficient gradient 

computation are a powerful combination.
‣ Implementing adjoint methods is hard work, but it is 

worth it.
‣ Demonstrated large-scale high-fidelity aircraft design 

applications.
‣ OpenMDAO facilitates the implementation of these 

methods for multidisciplinary problems.
‣ A lot more work to do!



Many of the implemented theoretical developments are 
now available as open-source software 

ENGINEERING
DESIGN OPTIMIZATION
JOAQUIM R.R.A. MARTINS 
ANDREW NING

https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization


Declarative sentence title

http://mdolab.engin.umich.edu/publications

Go forth and optimize!

http://mdolab.engin.umich.edu/publications


More information: http://mdolab.engin.umich.edu
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https://mdobook.github.io

http://mdolab.engin.umich.edu
https://www.linkedin.com/company/university-of-michigan-mdo-lab/
https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization
https://mdobook.github.io

